Phase (waves)

Simple harmonic motion; A is the amplitude and T is the period

The phase of an oscillation or wave is the fraction of a complete cycle corresponding to an offset in the displacement from a specified reference point at time t = 0. Phase is a frequency domain or Fourier transform domain concept, and as such, can be readily understood in terms of simple harmonic motion. The same concept applies to wave motion, viewed either at a point in space over an interval of time or across an interval of space at a moment in time. Simple harmonic motion is a displacement that varies cyclically, as depicted to the right.

It is described by the formula:

x(t) = A\cdot \sin( 2 \pi f t + \theta ),\,

where A is the amplitude of oscillation, f is the frequency, t is the elapsed time, and \theta is the phase of the oscillation. The phase determines or is determined by the initial displacement at time t = 0. A motion with frequency f has period T=\frac{1}{f}.  

Two potential ambiguities can be noted:

The term instantaneous phase is used to distinguish the time-variant angle from the initial condition. It also has a formal definition that is applicable to more general functions and unambiguously defines a function's initial phase at t=0.  I.e., sine and cosine inherently have different initial phases. When not explicitly stated otherwise, cosine should generally be inferred. (also see phasor)

Contents

Phase shift

Illustration of phase shift. The horizontal axis represents an angle (phase) that is increasing with time.

\theta is sometimes referred to as a phase-shift, because it represents a "shift" from zero phase. But a change in \theta is also referred to as a phase-shift.

For infinitely long sinusoids, a change in \theta is the same as a shift in time, such as a time-delay. If x(t)\, is delayed (time-shifted) by \begin{matrix} \frac{1}{4} \end{matrix}\, of its cycle, it becomes:

x(t - \begin{matrix} \frac{1}{4} \end{matrix}T) \, = A\cdot \sin(2 \pi f (t - \begin{matrix} \frac{1}{4} \end{matrix}T) + \theta) \,
= A\cdot \sin(2 \pi f t - \begin{matrix}\frac{\pi }{2} \end{matrix} + \theta ),\,

whose "phase" is now \theta - \begin{matrix}\frac{\pi }{2} \end{matrix}.   It has been shifted by \begin{matrix}\frac{\pi }{2} \end{matrix}.

Phase difference

In-phase waves
Out-of-phase waves
Left: the real part of a plane wave moving from top to bottom. Right: the same wave after a central section underwent a phase shift, for example, by passing through a glass of different thickness than the other parts. (The illustration on the right ignores the effect of diffraction whose effect increases over large distances).

Two oscillators that have the same frequency and different phases have a phase difference, and the oscillators are said to be out of phase with each other. The amount by which such oscillators are out of step with each other can be expressed in degrees from 0° to 360°, or in radians from 0 to 2π. If the phase difference is 180 degrees (π radians), then the two oscillators are said to be in antiphase. If two interacting waves meet at a point where they are in antiphase, then destructive interference will occur. It is common for waves of electromagnetic (light, RF), acoustic (sound) or other energy to become superposed in their transmission medium. When that happens, the phase difference determines whether they reinforce or weaken each other. Complete cancellation is possible for waves with equal amplitudes.

Time is sometimes used (instead of angle) to express position within the cycle of an oscillation.

In-phase and quadrature (I&Q) components

The term in-phase is also found in the context of communication signals:


A(t)\cdot \sin[2\pi ft + \phi(t)]
= I(t)\cdot \sin(2\pi ft) + Q(t)\cdot \underbrace{\cos(2\pi ft)}_{\sin\left(2\pi ft + \frac{\pi}{2} \right)}

and:


A(t)\cdot \cos[2\pi ft + \phi(t)]
= I(t)\cdot \cos(2\pi ft) \underbrace{{}- Q(t)\cdot \sin(2\pi ft)}_{{} + Q(t)\cdot \cos\left(2\pi ft + \frac{\pi}{2}\right)},

where \ f\, represents a carrier frequency, and


I(t)\ \stackrel{\text{def}}{=}\ A(t)\cdot \cos\left(\phi(t)\right), \,

Q(t)\ \stackrel{\text{def}}{=}\ A(t)\cdot \sin\left(\phi(t)\right).\,

A(t)\, and \phi(t)\, represent possible modulation of a pure carrier wave, e.g.:  \sin(2\pi ft).\,  The modulation alters the original \sin\, component of the carrier, and creates a (new) \cos\, component, as shown above. The component that is in phase with the original carrier is referred to as the in-phase component. The other component, which is always 90° (\begin{matrix} \frac{\pi}{2} \end{matrix} radians) "out of phase", is referred to as the quadrature component.

Phase coherence

Coherence is the quality of a wave to display well defined phase relationship in different regions of its domain of definition.

In physics, quantum mechanics ascribes waves to physical objects. The wave function is complex and since its square modulus is associated with the probability of observing the object, the complex character of the wave function is associated to the phase. Since the complex algebra is responsible for the striking interference effect of quantum mechanics, phase of particles is therefore ultimately related to their quantum behavior.

Phase compensation

Example of a phase compensation circuit.

Phase compensation is the correction of phase error (i.e., the difference between the actually needed phase and the obtained phase). A phase compensation is required to obtain stability in an opamp. A capacitor/RC network is usually used in the phase compensation to keep a phase margin. A phase compensator subtracts out an amount of phase shift from a signal which is equal to the amount of phase shift added by switching one or more additional amplifier stages into the amplification signal path.

See also

External links